5,744 research outputs found

    Surprising relations between parametric level correlations and fidelity decay

    Get PDF
    Unexpected relations between fidelity decay and cross form--factor, i.e., parametric level correlations in the time domain are found both by a heuristic argument and by comparing exact results, using supersymmetry techniques, in the framework of random matrix theory. A power law decay near Heisenberg time, as a function of the relevant parameter, is shown to be at the root of revivals recently discovered for fidelity decay. For cross form--factors the revivals are illustrated by a numerical study of a multiply kicked Ising spin chain.Comment: 4 pages 3 figure

    Evolutionary Robotics: a new scientific tool for studying cognition

    Get PDF
    We survey developments in Artificial Neural Networks, in Behaviour-based Robotics and Evolutionary Algorithms that set the stage for Evolutionary Robotics in the 1990s. We examine the motivations for using ER as a scientific tool for studying minimal models of cognition, with the advantage of being capable of generating integrated sensorimotor systems with minimal (or controllable) prejudices. These systems must act as a whole in close coupling with their environments which is an essential aspect of real cognition that is often either bypassed or modelled poorly in other disciplines. We demonstrate with three example studies: homeostasis under visual inversion; the origins of learning; and the ontogenetic acquisition of entrainment

    Die Wertschöpfungskette von Bio-Rübenzucker aus bayerischen Zuckerrüben und Nutzung des bayerischen Bio-Siegels

    Get PDF
    To foster the production of organic and local food the federal state of Bavaria introduced in 2015 the Bavarian organic label. Even though Bavaria has a comparatively high self-sufficiency in conventional sugar beet sugar there is a lack of organic sugar factories. In this study qualitative interviews have been conducted to analyze the value chain of organic sugar beets from Bavaria and the use of the organic and local label

    Multiplicity at the Stellar/Substellar Boundary in Upper Scorpius

    Get PDF
    We present the results of a high-resolution imaging survey of 12 brown dwarfs and very low mass stars in the closest (~145 pc) young (~5 Myr) OB association, Upper Scorpius. We obtained images with the Advanced Camera for Surveys/High Resolution Camera on HST through the F555W (V), F775W (i'), and F850LP (z') filters. This survey discovered three new binary systems, including one marginally resolved pair with a projected separation of only 4.9 AU, resulting in an observed binary fraction of 25+/-14% at separations >4 AU. After correcting for detection biases assuming a uniform distribution of mass ratios for q>0.6, the estimated binary fraction is 33+/-17%. The binary fraction is consistent with that inferred for higher-mass stars in Upper Sco, but the separation and mass ratio distributions appear to be different. All three low-mass binary systems in Upper Sco are tight (<18 AU) and of similar mass (q>0.6), consistent with expectations based on previous multiplicity studies of brown dwarfs and very low mass stars in the field and in open clusters. The implication is that the distinct separation and mass ratio distributions of low-mass systems are set in the formation process or at very young ages, rather than by dynamical disruption of wide systems at ages >5 Myr. Finally, we combine the survey detection limits with the models of Burrows et al. (1997) to show that there are no planets or very low-mass brown dwarfs with masses >10 M_J at projected separations >20 AU, or masses >5 M_J at projected separations >40 AU orbiting any of the low-mass (0.04-0.10 M_sun) objects in our sample.Comment: Accepted for publication in ApJ; 10 pages, 4 figures in emulateapj forma

    Exact diagonalisation of 1-d interacting spinless Fermions

    Full text link
    We acquire a method of constructing an infinite set of exact eigenfunctions of 1--d interacting spinless Fermionic systems. Creation and annihilation operators for the interacting system are found and thereby the many--body Hamiltonian is diagonalised. The formalism is applied to several examples. One example is the theory of Jack polynomials. For the Calogero-Moser-Sutherland Hamiltonian a direct proof is given that the asymptotic Bethe Ansatz is correct.Comment: 33 page

    Oscillatory decay of a two-component Bose-Einstein condensate

    Full text link
    We study the decay of a two-component Bose-Einstein condensate with negative effective interaction energy. With a decreasing atom number due to losses, the atom-atom interaction becomes less important and the system undergoes a transition from a bistable Josephson regime to the monostable Rabi regime, displaying oscillations in phase and number. We study the equations of motion and derive an analytical expression for the oscillation amplitude. A quantum trajectory simulation reveals that the classical description fails for low emission rates, as expected from analytical considerations. Observation of the proposed effect will provide evidence for negative effective interaction.Comment: 4 pages, 3 figue

    Limitation of entanglement due to spatial qubit separation

    Full text link
    We consider spatially separated qubits coupled to a thermal bosonic field that causes pure dephasing. Our focus is on the entanglement of two Bell states which for vanishing separation are known as robust and fragile entangled states. The reduced two-qubit dynamics is solved exactly and explicitly. Our results allow us to gain information about the robustness of two-qubit decoherence-free subspaces with respect to physical parameters such as temperature, qubit-bath coupling strength and spatial separation of the qubits. Moreover, we clarify the relation between single-qubit coherence and two-qubit entanglement and identify parameter regimes in which the terms robust and fragile are no longer appropriate.Comment: 7 pages, 3 figures; revised version, accepted for publication in Europhys. Let

    Hydrophilic interaction chromatography – mass spectrometry for metabolomics and proteomics:state-of-the-art and current trends

    Get PDF
    Among all the –omics approaches, proteomics and metabolomics have received increased attention over the last decade. Both approaches have reached a certain level of maturity, showing their relevance in numerous clinical applications, including biomarkers discovery, improved diagnosis, staging, and prognosis of diseases, as well as a better knowledge on various (patho-)physiological processes. Analytically, reversed-phase liquid chromatography – mass spectrometry (RPLC-MS) is considered the golden standard in proteomics and metabolomics, due to its ease of use and reproducilibity. However, RPLC-MS alone is not sufficient to resolve the complexity of the proteome, while very polar metabolites are typically poorly retained. In this context, hydrophilic interaction chromatography (HILIC) represents an attractive complementary approach, due to its orthogonal separation mechanism. This review presents an overview of the literature reporting the application of HILIC-MS in metabolomics and proteomics. For metabolomics the focus is on the analysis of bioactive lipids, amino acids, organic acids, and nucleotides/nucleosides, whereas for proteomics the analysis of complex samples and protein post-translational modifications therein using bottom-up, middle up/down proteomics and intact protein analysis is discussed. The review handles the technological aspects related to the use of HILIC-MS in both proteomics and metabolomics, paying attention to stationary phases, mobile phase conditions, injection volume and column temperature. Recent trends and developments in the application of HILIC-MS in proteomics and metabolomics are also presented and discussed, highlighting the advantages the technique can provide in addition or complementary to RPLC-MS, as well as the current limitations and possible solutions
    • …
    corecore